三角函数求解:若tanx=1⼀2, 求sin^2x+2sinxsin(π⼀2-x)+3sin^2(3π⼀2-x)

若tanx=1/2, 求sin^2x+2sinxsin(π/2-x)+3sin^2(3π/2-x)
2025-05-09 11:56:04
推荐回答(1个)
回答1:

tanx=1/2,sinx/cosx=1/2→sinx=cosx/2①.
sin^2x+cos^2x=1②。联立两式得:cos^2x=4/5
sin^2x+2sinxsin(π/2-x)+3sin^2(3π/2-x)=(1-cos2x)/2+2sinxcosx+3【1-cos2(3π/2-x)】/2
=1/2-cos2x/2+cos^2x+3/2+3cos2x/2
=2+cos^2x+cos2x=2+cos^2x+2cos^2x-1=3cos^2x+1=3*4/5+1=3.4